A-35

Magneto-structural Phase Diagram for LuFe₂O₄

Joost de Groot¹, Zahirul Islam², Jong-Woo Kim², Doug Robinson², Steve Nagler³, Andy D. Christianson³, Arlei B. Antunes⁴, and Manuel Angst¹

¹Institut für Festkörperforschung, Forschungszentrum Jülich GmbH, JARA FIT, JCNS, D-52425, Germany
²Argonne National Laboratory 9700 S. Cass Avenue, Argonne, IL 60439
³Oak Ridge National Laboratory, Oak Ridge, TN 37831

In this work we will present magnetization measurements and field-dependence diffraction on highly stoichiometric LuFe₂O₄ single crystals and the related complex magnetic-temperature phase diagram. The magnetic behavior of LuFe₂O₄ depends very sensitively on its oxygen stoichiometry; for high-quality samples, the compound shows a sharp antiferromagnetic transition at $T_N \sim 240$ K. A metamagnetic transition between a ferri- and antiferromagnetic phase occurs below T_N by applying magnetic fields in the c direction. This transition does not involve any structural changes. Below 170K, frequency-dependent AC susceptibility suggests a phase with "glassy" dynamics. This glassy phase is separated from the rest of the phase diagram by a transition with structural component. The complex magnetic phase diagram likely derives from combined ferri- and antiferromagnetic clusters and a structural distortion. Neutrons also indicate a magnetic cluster structure with shorter correlation length for the "glassy" state. The latter accounts for an apparent kinetic hindrance of a transition between two of the phases, leading to a very high value of coercivity >9T at low temperatures. The structural transition has also a time dependence on the scale of hours.

⁴Grenoble High Magnetic Field Laboratory, CNRS 25 rue de Martyrs, F-38042 Grenoble, France